

Application of Process Intensification in starch processing

AVEBE

by Dr Ir Marco L.F. Giuseppin Process Research AVEBE Detmold, 9 April 2003.

PI or π

π Contents

Introduction

- Process Intensification: what & why?
- New design methodologies
- Examples from other industries
- **Examples from starch industry**
 - Case 1 : model based process redesign
 - Case 2: Improved breaking with water
- Stages of process intensification
 - Functional approach
 - Case 3: Washing and de-watering of starch
 - Implementation
- **Conclusions**

π Why process innovation?

AVEBE

Technology and product innovation are linked.

The lifecycle (pull, push, cost) vs. the technology need

π What is process intensification, PI ?

 A redesign method using conceptual stages focussing on functional aspects driven by reducing the size of overall process lines.

This in contrast to e.g. :

- rearranging process units
- optimising single process units

π History of Pl

Concept :

- Pioneered in ICI during the late 1970's to reduce the capital cost
- Main Plant items : 20% of the cost.
- The balance is incurred by installation costs

A major reduction of equipment size by:

- --- "telescoping" of equipment functions
- --- eliminating support structure, foundations and long pipes.

Additional benefits:

- --- potential by accelerating the response to market changes
- --- facilitating scale-up
- --- basis for rapid development of new products and processes.

π PI areas

equipment

- multi-functional reactors
- hybrid separations

energy

- alternative energy sources
- integration of energy and exergy aspects

ш

AVE

VFR

AVEBE

π Changes in process design

Process design depends on business objectives not a goal on itself

Process design must include (People, Planet, Profit)

- energy, sustainability,
- economic, social factors

AVEBE

Process intensification is an opportunity.

π Classic design

□ Hierarchical procedure e.g. acc. Douglas (1988)

- decomposition to black box
- conceptual design starts with black box then functional sections (unit operations) are added
- early economic evaluation
- hierarchy of decisions

Creative new technology easily rejected, not implemented

π Design by Process Systems Engineering

Systems approach vs unit operation approach

Process analysis

- decompose process into functional blocks
- tasks prevails over equipment

Process synthesis

- black / gray box & early economic evaluation
- build process systematically & document all alternatives (QFD principle)

AVEBE

π PI must be combined !

Pre-work done by using :

⊠Root Cause Analysis (RCA),

SFailure Mode and Effect Analysis (FMEA)

Solution Strain Str

STRIZ (by Altshuller) ⊠

☑ Quality Function Deployment

AVEBE

These tools can be used to find and to work on the real problem.

G.Poppe and B.Gras, Innovation Quotient, http://www.triz-journal.com/archives/2002/02/c/ Altshuller, The 40 TRIZ principles.

π Examples of process intensification

- Novel technologies,
 - hybrid systems, combined unit operations
 - oscillatory flow
 - micro channels
- The use of alternative
 - solvent & energy systems
 - Novel equipment
 - / reactors

(separations, reaction)

- Reactive distillation
- **O** Multifunctional reactors
- **D**ryer-granulators
- Microwave heating
- Eutectic freeze crystallizer
- \circ scCO₂
- o Static mixers,
- o Monolithic catalysts,
- **o** Micro reactors
- o Compact heat exchangers,
- o Spinning-disk reactors,
- **o HIGEE** separators

π Small to overcome a.o. heat and mass transfer limitations

■ Hi Gee separators

Increase driving forces Higher mass transfer performance by centrifugal techniques. Ramshaw at ICI early 1980's

Integrated Reactor-Heat Exchangers (HEX Reactors) vs STR

Fast exothermic or endothermic reactions e.g. liquid-liquid extraction reactor

Hickson & Welch: reaction time 28 h to 15 minutes

Dow Chemical UK: reaction time 4 h to 4[']. 120 T/year in 25 cc reactor.

- Spinning tube-in-tube (STT) Holl technologies
 - Spinning disc reactor (SDR) by Glaxo Smith Kline (C. Ramshaw, J.R. Burns)
 - high heat transfer rate 10 kW/m2K
 - small reactor volume
 - high yield > 99.9 %, no by products (93 %reduction)
 - increased conversion rate 100x

Ref. a.o. Stankiewicz & Moulijn, Chem. Eng. Progress, Jan 2000.

π Examples of PI in starch processing

Examples of PI in starch industry are rare :

- dominated by incremental improvements
- traditional industry
- mature technology

- extrusion processes
- membrane processes (FAIR-CT98-9154)

Functions or tasks in processes π

Basic functions

- chemical change
- concentration change
- separation
- phase transition
- temperature change
- pressure change
- form change
- Many other functions!

Example

- biochemical reactions
- adding solvents
- membrane
- evaporation
- cooling
- pumping
- extrusion

Various functions of water in starch processing

- \propto Dissolve
- ∝ React
- ∝ Carry
- ∝ Dilute
- ∝ Absorb & Transport heat
- ∝ Swell
- ∝ Break
- ∝ Reduce viscosity
- ∝ Product component

BUT:

- minimise use
- good quality water is becoming scarce and expensive
- mind water quality and microbial aspects

MLF Giuseppin Det

π

π Case 1 : model based process redesign

Rajaram & Corbett UCLA Cerestar (Cargill 2002):

5 year iterative process redesign flows and control on wheat starch plant at Sas van Gent the Netherlands.

Trigger : environmental regulation

Benefits:

- Energy consumption were reduced by 30% (50.4 MWH per day)
- Fresh water 50% and (2500 m³ per day)
- Annual cost savings were 3 \$ million.

Indirect:

- Better deeper understanding of the drivers of process performance.
- Less environmental impact →NO investment of \$100 million for expansion of the wastewater facility.

Ref: K.Rajaram, C.J. *Corbett* Achieving Environmental and Productivity Improvements through Model-Based Process Redesign Forthcoming in *Operations Research.*

MLF Giuseppin Detmold 9/4/2003

π Case 1: basic process for modelling

π Case 1: Flows before redesign

NB : mind the fresh vs recycled water flows

AVE

AVFRF

π Case 1: Flows after redesign cycles

π Case 2: Functional Cryogenic breaking

The principle in Cargill patent US 6368649 B1

- Use unique function of water.
- Use water where it is needed.

- Short steeping with water
 - water content 16 to 25 %
 - within 15-60 minutes
 - excess water removed
- Cold shock using cryogenics (liquid $N_{\rm 2}$ / CO $_{\rm 2}$)
 - freezing of water in capillaries
- Impact mill
 - starch free coarse fibres jump off
 - easy separation germ and gluten

π Case 2: Cryogenic breaking

MLF Giuseppin Detmold 9/4/2003

AVEBE

π Wet corn processing old vs proposed

π Stages of process intensification

- 1 Functional description of the process (line)
- 2 Setting theoretical maximal performances for each function
- 3 Recombining functional elements
- 4 Optimisation of functional elements to meet the the theoretical performance (modelling)
- **5** Selected concept

π The analogy with the TRIZ methodology

AVEBE

π Basic tools within TRIZ

π Powerful tools

Trends

See: Creax.com

Solid ⇒ Liquid ⇒ Aerosols ⇒ Gas ⇒ Field

Evolutionary Potential Diagrams

AVEBE

AVFRF

π Case 3: Redesign washing and dewatering

Process: Potato starch modification in Suspension

VFRF

π The sub-system: Separation Process

Washing process Function: **Remove of Impurities**

Dewatering process

Function:

Reduce the amount of water

NB

 \Box Product specification is made in final drying step \rightarrow Costs!

Hydrocyclones

Washing ratio (6-stage):

3-5 kg / kg ds

high energy demand

high investment

losses of starch

maintenance

AVEBE

π Dewatering Process Present Situation

Rotary vacuum filter

38% - 40% moisture

- Low energy demand
- Less maintenance
- Reliable
- Low investment

ш

 \mathbf{m}

π PI stages

Functional description of the process (line) Setting theoretical maximal performances for each function Recombining functional elements Optimisation of functional elements to meet

- the theoretical performance (modelling)
- **5 Selected concept**

Ш

 \square

$\pi ~~ \underset{\text{washing \& dewatering}}{\text{Simple functional model of}} ~~$

MLF Giuseppin Detmold 9/4/2003

AVEBE

π TRIZ principles

Technical contradictions indicate :

- Consolidate and combine processes
- Make one continuous process
- Use thin films

ш

AVE

VERE

π PI stages

Functional description of the process (line) Setting theoretical maximal performances for each function Recombining functional elements Ontimisation of functional elements to meet

the theoretical performance (modelling)

5 Selected concept

ш

 $\bigcap \bigcap$

π Modelling: water in starch

Residual Moisture, $W_{\mbox{\scriptsize rm}}$, consists of various water locations

- absorbed fixed
- adsorbed small
- pendular < 0.076 vol%
- wet spot
- capillary

$$W_{rm} = W_{abs} + W_{ads} + W_{pendular} + W_{wetspot}(S) + W_{cap}$$

The capillary water model is essential:

$$N_{cap} = f(psd, \Delta P, H, \eta, R_m, \varepsilon, \gamma.cos\phi, t)$$
AVEBE

π Fundamental Approach

Washing model

- Removal of impurities
- Wash ratio
- Ratio: absorbed water vs external water
- Thickness of Filter cake
- Water ratio for 90% removal: HC: 10 vs VF: 2
- Fast kinetics
- Dewatering model
 - Dewatering kinetics
 - Slow kinetics

ш

 $\mathbf{\Omega}$

π Model elements

AVEBE

replacing of centrifuges / pressure filters

π PI stages

Functional description of the process (line) Setting theoretical maximal performances for each function

3 Recombining functional elements

4 Optimisation of functional elements to meet the theoretical performance (modelling)

5 Selected concept

 π Combined washing and dewatering

AVEBE

□ 100% removal with Wash Ratio < 1.0

Kinetics of washing much faster than dewatering

Investment limited

Design equipment with combined functions using the model

Vacuum filter scheme π

AVEBE Improved design washing & dewatering π Wash water **Slurry feed** K **Filter cake Dewatering AVE**

MLF Giuseppin Detmold 9/4/2003

π PI stage

 Functional description of the process (line)
 Setting theoretical maximal performances for each function
 Recombining functional elements
 Optimisation of functional elements to meet the theoretical performance (modelling)
 Selected concept

ш

π Present Process

π Future Process

MLF Giuseppin Detmold 9/4/2003

π Practice: Initial trials at factories

Starch derivative	Water ratio [kgH₂O∙kg S ⁻¹]	Feed wt. %	Mode	Moisture [%]	Capacity [kg·m ² ·h ⁻¹]
Oxidized & etherified	3 - 4	25	HC & VF	39 ± 1	320
	1	30	Top feed	40.6±0.2	290
Cross linked*	4	27	HC & VF	38.6± 0.3	470
	1	30	Top feed	38.0±0.2	225
Oxidized*	3 - 4	27	HC & VF	40.6±0.2	470
	1	30	Top feed	40.0±0.1	210

□ stable, effective removal of salts

*Food application

- □ *initially lower capacities*
- □ lower moisture content → impact dryer capacity

WO 02/28907

□ higher starch concentration in feed up to 39% vs 32% traditionally

Ш

π Conclusion

 □ Water reduction
 50 - 80 %

 □ Energy reduction
 > 60%

reduction starch losses
no recycles (GMP)
increased reliability
less investment

Iess maintenance

□ PI : be smarter, smaller, cleaner, cheaper,....

π Acknowledgements

Process Research at R&D AVEBE

- Drs Th. Franke (PL)
- Ing M. Been
- Ir H. Grommers
- Many other R&D co-workers
- Production co-workers Ter Apelkanaal

Conceptual

- Ir B. Gras, Innovation Quotient
- Prof H. van der Berg TU Twente

 \bigcap

π Conference & Reading

 First international Symposium on Process Intensification and miniaturisation, 18 - 21 August 2003 Newcastle upon Tyne

□ PIN news

http://www.ncl.ac.uk/pin/news/contents.htm